Socialiniai tinklai

Mokslas

Tamsiosios materijos detektoriumi stebėtas rečiausias kada nors užfikuotas įvykis

technologijos

Paskelbta

data

Kaip stebėti procesą, trunkantį daugiau nei trilijoną kartų ilgiau už Visatos amžių? XENON Collaboration tyrėjų komanda atliko tai instrumentu, skirtu neapčiuopiamų Visatos tamsiosios materijos dalelių paieškai. Balandžio 25 dieną žurnale Nature publikuotame straipsnyje tyrėjai praneša stebėję ksenono-124 skilimą, kurio pusperiodis yra 1,8×10²² metų.

„Iš tiesų matėme, kaip vyksta šis skilimas. Tai – ilgiausias, lėčiausias kada nors tiesiogiai stebėtas procesas, ir mūsų tamsiosios materijos detektorius pakankamai jautrus, kad jį išmatuotų,“ sakė Ethanas Brownas, fizikos asist. prof. Rensselaer, ir tyrimo benraautorius. „Nuostabu būti šio proceso liudininku, ir tai rodo, kad mūsų detektorius gali užfiksuoti rečiausią kada nors užfiksuotą įvykį.“

XENON Collaboration naudoja XENON1T, 1 300 kilogramų indą pilną supergryno skysto ksenono, nuo kosminių spindulių saugomo kriostate, panardintame į vandenį 1 500 metrų po Gran Sasso kalnais Italijoje. Tyrėjai ieško tamsiosios materijos (kurios penkis kartus daugiau, nei įprastos, bet kuri labai retai su įprasta materija sąveikauja) fiksuodami mažus šviesos žybsnius, kai dalelės sąveikauja su detektoriaus ksenonu. O kadangi XENON1T buvo skirtas fiksuoti tamsiosios materijos dalelės ir ksenono branduolio sąveiką, detektorius aptinka bet kokią sąveiką su ksenonu.

Ksenono skilimo požymiai radosi, ksenono atomo branduolio protonui pavirtus į neutroną. Daugumoje skylančių elementų tai nutinka, kai į branduolį įtraukiamas vienas elektronas. Bet kad pavirstų neutronu, protonas ksenono branduolyje privalo sugerti du elektronus, – įvykti „dvigubas elektrono perėmimas.“

Dvigubas elektrono perėmimas vyksta tik tada, kai visai šalia branduolio du elektronai atsiduria tinkamu metu – „retas įvykis turi vykti kartu su kitu retu įvykiu, tad bendras įvykis nutinka itin retai,“ paaiškino Brownas

.Kai ši ultrareta proga pasitaikė ir dvigubas elektrono perėmimas įvyko detektoriuje, instrumentas užfiksavo atomo elektronų persirikiavimo, užpildant poros branduolio absorbuotų elektronų vietas, signalą.

„Vykstant dvigubam perėmimui, elektronai perimami iš artimiausio branduoliui elektrono sluoksnio, ir jame atsiranda laisva vieta,“ sakė Brownas. „Likę elektronai peršoka į žemiausią lygį ir mes šį procesą užfiksavome detektoriuje.“

Šis pasiekimas pirmą kartą leido šmatuoti šio ksenono izotopo pusinio skilimo periodą, remiantis tiesioginiu jo radioaktyvaus skilimo stebėjimu.

„Tai – stulbinamas atradimas, praplečiantis fundamentaliausių materijos savybių pažinimo ribas,“ pabrėžė Mokslo mokyklos dekanas Curtas Brenemanas. „Dr. Browno darbas kalibruojant detektorių ir užtikrinant ksenono švarumą iki aukščiausio įmanomo lygio, buvo kritiškai svarbūs šiam svarbiam stebėjimui.“

XENON Collaboration dalyvauja daugiau nei 160 mokslininkų iš Europos, JAV ir Viduriniųjų Rytų, o nuo 2002 metų,naudojo tris vis jautresnius skysto ksenono detektorius Gran Sasso Nacionalinėje laboratorijoje Italijoje. XENON1T, didžiausias tokio tipo detktorius, duomenis rinko nuo 2016 metų iki 2018 metų gruodžio, kai buvo išjungtas. Dabar mokslininkai rengia eksperimentą naujai XENONnT fazei, kurioje aktyvi detektoriaus masė bus trigubai didesnė, nei XENON1T. Drauge su mažesniu foninio triukšmo lygiu, tai detektorius jautrumą padidins maždaug 10 kartų.

Komentarai

Jūsų komentaras

El. pašto adresas nebus skelbiamas. Būtini laukeliai pažymėti *

Kosmosas

Kaip mūsų visata atrodo iš šono? Formos paslaptis.

technologijos

Paskelbta

data

Skelbia

Nesunkiai nustatome tolimų dangaus kūnų formas, nes regime juos iš šalies. Su Visata reikalai kur kas sudėtingesni, nes negalime iš jos pasitraukti ir pažvelgti iš šono. O tada kokia iš tiesų Visatos forma? Ir kuo remiasi mokslo prognozės?

Visatos forma nėra naujas klausimas – jį svarstė dar senovės išminčiai. Induizmo tekstai erdvę aprašo kaip kiaušinį. Džainizmas nurodo gigantišką žmogų, o senovės Graikijos stoikai manę, kad tai – begalinėje tuštumoje plaukiojanti saka.

Tokios prielaidos moksliniais faktais nėra pagrįstos, todėl tyrimuose mokslininkai dažnai remdavosi Alberto Einšteino reliatyvumo teorija. Pagal ją, masė iškreipia erdvę. Tad, Visatos formą ir jos baigtį apsprendžia jos tankis – erdvės tūrio vienete esanti masė.

Mokslininkams pavyko nustatyti kritinį Visatos tankį, kuris proporcingas erdvės plėtimosi greitį apibrėžiančios Hubble’o konstantos kvadratui. Tik štai dėl Hubble’o konstantos vis dar nesutariama, todėl mūsų modeliai gali ir pasikeisti.

Nauji kosminiai skaičiavimai Visatos plėtimosi paslapties nepaaiškino – veikiau atvirkščiai

O kokios tos formos? Yra keli scenarijai. Jei erdvės tankis mažesnis už kritinį, tada erdvės plėtimuisi sustabdyti materijos nepakaks ir Visata plėsis amžinai. Tada erdvės forma primena balną – atvira Visata.

Jei Visatos tankis didesnis už kritinį, tada plėtimuisi masės užteks. Tokia Visata uždara ir baigtinė, be aiškaus krašto. Tai – sfera. Beje, pagal šį scenarijų erdvė pradės trauktis ir įvyks Didžiojo Sprogimo priešingybė, ir Visata sukris į save.

Yra ir trečias variantas, kai Visatos tankis lygus kritiniam tankiui. Taip plėtimosi greitis pamažu lėtėja per begalinį laiką. Tada kosminė erdvė plokščia ir begalinė.

Mokslo bendruomenė šiuos tris variantus labiausiai priimtinais. Tačiau kai kurie mokslininkai dar neatmeta riestainio arba vamzdžio varianto. Pavyzdžiui, riestainis techniškai yra plokščias, tačiau daugelyje vietų susietas. O vamzdis – balno formos variantas su vienu plačiu, o kitu siauru galu.

Kai kas mano, kad Visatos forma panaši į riestainio

Kokia forma labiausiai tikėtina? Remiantis kosminės Plancko observatorijos (2015 m.) duomenimis, gyvename begalinėje ir plokščioje Visatoje. Tačiau suprasti, kad mūsų apžvalgos galimybės – ribotos.

Mes vis dar nepasiekėme Didžiojo Sprogimo „taško“, o plėtimasis vyksta tokiu greičiu, kad kai kurie objektai atsidūrė už regimosios visatos ribų.

Tačiau remiantis turima informacija, plokščioji Visata – labiausiai tikėtina forma. Tačiau mokslininkai šią temą vis dar nagrinėja. Dabar aktyviai tiriamas reliktinis spinduliavimas, galintis pateikti daug naudingos informacijos.

Kas žino, gal mūsų palikuoniai kada nors supras gyvenantys gigantišką riestainį primenančioje Visatoje. Kaip manote?

Skaityti daugiau

Mokslas

Kinijos radioteleskopas užfiksavo „atkaklių“ signalų seriją iš tolimojo kosmoso

technologijos

Paskelbta

data

Skelbia

Greituosius radijo blyksnius geriau fiksuoti greitu teleskopu. Tad, Kinijos FAST teleskopas tam puikiai tinka. Neseniai jis tai patvirtino, užfiksavęs ne bet kokius, o daug kartų pasikartojančius radijo blyksnius.

Prieš kelis metus kalnų slėnyje Kinijoje buvo pastatytas gigantiškas, 500 metrų apertūros radioteleskopas. Jis pavadintas FAST ir juo neseniai padarytas, turbūt svarbiausias per šio teleskopo dar neilgą istoriją, atradimas. Teleskopu pavyko užfiksuoti neįprastus, pribloškiamu dažnumu besikartojančius greituosius radioblyksnius iš tolimo kosmoso. Atrodo, lyg kas iš kito Visatos krašto bandytų mums „prisiskambinti“.

Toks radioblyksnių tipas pirmą kartą užfiksuotas dar 2012 metais, Puerto Rike esančioje Arecibo observatorijoje, ir nuo to laiko jis pasikartojo dar kelis kartus. Signalas pavadintas FRB 121102, o iš netiesioginių požymių mokslininkai nustatė, kad jis atsklido iš už 3 milijardų šviesmečių – tai yra toli netgi regimosios visatos masteliu. Ir štai, rugpjūčio 30 dieną, FRB 121102 pasireiškė vėl. Tačiau dabar jau kaip dešimtys pasikartojančių impulsų.

Sutapimas tai ar ne, tačiau FAST yra jautriausias 1,05–1,45 GHz dažnių ruože, todėl jis – idealus FRB 121102 stebėjimo įrankis. Rugsėjo 3 dieną buvo užfiksuota iš karto 20 impulsų iš eilės. Radioteleskopo komanda intensyviai darbuojasi ir jau spėjo operatyviai paskaičiuoti ir atlikti pakeitimus, pašalindami praskrendančių lėktuvų ir palydovų keliamus trikdžius. FAST pasirengęs „klausyti“ FRB 121102, ir šimtai mokslininkų iš viso pasaulio padės analizuoti juo surinktus signalus.

Jei nėra būtinybės, nežemiškos civilizacijos siunčiamų signalų galimybės niekas nesvarsto. Labiau tikėtina, kad tai tradicinis žmonijos mokslo „bruožas“ – kaskart, kai sukuriam naują galingą detektorių, pasaulio vaizdas staiga pasikeičia. Gauname naujų, ne visai suprantamų duomenų, ir pradedame perdirbinėti senus modelius ir teorijas. Kalbant apie FRB 121102, jau yra iškelta hipotezių, kad šių signalų šaltinis – kažkoks kosminis kūnas, apie kurį kol kas nieko nežinome. Gali būti, kad taip pasireiškia dar nežinoma neutroninės žvaigždės gyvavimo fazė.

Skaityti daugiau

Skaitomiausi